A cat jumps from a ledge that is meters off the ground to catch a hummingbird. While in the air, the center of mass of his motion is at a height given by the equation
h(t)=Ho+Vo*t-9.8*t^2
which holds right until he lands on the ground. He lands with a velocity of -7 meters per second, 1.2 seconds after starting the jump.
1) how high is the ledge?
2) what is the initial velocity?How to solve a motion equation word problem?2) h(t) = Ho + Vot - 9.8t^2
h'(t) = v(t) = Vo - 19.6t
-7 = Vo - 19.6(1.2)
-7 + 23.52 = Vo
16.52 = Vo
The initial velocity is 16.52 m/sec.
1) h(t) = Ho + 16.52t - 9.8t^2
0 = Ho - 15.52(1.2) - 9.8(1.2)^2
32.736 = Ho
The ledge is 32.736 m above the ground.
Since a = 9.8 m/sec^2, shouldn't the equation be h(t) = Ho + Vot - 4.9t^2?How to solve a motion equation word problem?Ho is the height of the ledge. So solve for Ho by plugging your know values into the given equation:
h(1.2) = 0 = Ho + Vo*1.2 - 9.8(1.2^2)
The height at t = 1.2 is zero because the cat lands on the ground.
If you've done derivatives, you solve the equation by taking the derivative of the height which gives you the vertical velocity as a function of time. If you haven't done derivatives, I would assume the initial velocity of the cat is zero. Hence Vo = 0. Or take the derivative:
h'(t) = V(t)
V(t) = Vo - 2*9.8t
Now you know that at t = 1.2 the velocity is -7 ms-1. So:
-7 + 2*9.8 = Vo
Now plug that back into the first equation and solve for the initial height.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment